
Journal of Global Optimization 9: 1-22, 1996.
© 1996 KluwerAcademic Publishers. Printed in the Netherlands.

Parallel Methods for Verified Global Optimization
Practice and Theory

Sonja Berner
Fachbereich Mathematik, Universitiit Wuppertal, D-~2097 Wuppertal
email: sonja ~math. uni- wuppertal, de

Abstract. We present a new parallel method for verified global optimization, using
a centralized mediator for the dynamic load balancing. The new approach combines
the advantages of two previous models, the master slave model and the processor
farm. Numerical results show the efficiency of this new method. For a large number
of problems at least linear speedup is reached. The efficiency of this new method
is also confirmed by a comparison with other parallel methods for verified global
optimization. A theoretical study proves that using the best-first strategy to choose
the next box for subdivision, no real superlinear speedup may be expected concerning
the number of iterations. Moreover, the potential of parallelization of methods of
verified global optimization is discussed in general.

Key words: Global optimization, parallel computing, interval arithmetic, branch
and bound, dynamic load balancing

1. I n t r o d u c t i o n

In this paper, which contains results from Berner (1995) we are dealing
with the parallelization of verified methods for global optimization. The
problem considered here can be formulated as: Given a continuously
differentiable function f : D -+ JR, D _C]R ~ open, and a compact set
X ° C_ D which shall be an n-dimensional box, find the global min imum

f* = rain f (x)
2~X o

and also find the set of all global minimum points

X * = {x • X ° : f (x) = f*} .

Classical methods may fail to find the global minimum since often only
finitely many discrete points are considered. Interval methods, however,
find an enclosure of the global minimum and also of all global minimum
points with the branch and bound principle. According to this principle
the start ing box X ° is successively subdivided into smaller subboxes,
and those which can be shown to not contain global minimum points
are deleted.

Problems of global optimization are usually hard to solve. Thus the
development of parallel methods often is a must to make them tractable

2 SONJA BERNER

at all. After some preparations in Sections 2 and 3 we present a new
approach to the parallelization of branch and bound methods for veri-
fled global optimization in Section 4. This approach uses a centralized
mediator for dynamic load balancing. The efficiency of this new method
is shown by measurements on a CM5 parallel computer for a variety
of test problems. It is compared with other methods, which are briefly
described (Section 5).

Some theoretical results given in Section 6 show that an efficient
parallelization may especially be expected for those problems with a
high number of global minimum points or many local minimum points,
with function value near to f*. These problems are hard to solve by
classical methods. Moreover, we prove that no 'true' superlinear speed-
up may be expected when the best-first strategy is used to choose the
next box for subdivision.

2. Interval A r i t h m e t i c

The use of interval arithmetic (see e.g. Alefeld and Herzberger (1983),
Neumaier (1990)) allows computations with intervals instead of real
numbers. Let the set of all compact intervals be denoted by IIR :=
{[a, ~] : a , ~ E IR, a <__ ~}. The operations + , - , . , / for intervals
A, B E IIR are defined by

A o B : = { a o b : a e A , b e B } , o e { + , - , . , / } ,

where 0 C B is excluded for division. To compute AoB, only the bounds
of A and B have to be considered. Standard functions for intervals can
be defined in an analogous way. The bounds of an interval A = [a, ~] C
IIR. are termed inf A := _a and sup A := ~ here. The diameter of A is
denoted by w(A) := ~ - _a, the absolute value by IAI : = m a x (l a l : a
A}. Interval vectors X C IIR ~ are also termed boxes here.

If interval arithmetic is used on a machine, then, additionally, out-
ward rounding is necessary to guarantee that a o b is enclosed in the
machine interval A o B for all a C A, b E B. There exist several pro-
gramming languages, such as Pascal-XSC (Klatte et al. (1991)), C-XSC
(Klatte et al. (1993)) etc., and also libraries which support outward
rounding.

3. A Basic Serial M e t h o d

Methods of verified global optimization do not only use information at
discrete points. Instead, they use global information in the form of an

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 3

inclusion function F to find the solution of the problem. This inclusion
function F provides an interval F(X) with

F(X)~_{f(x) : x E X } for a l l X C _ X ° , x C I I R '~,

which encloses the range of f over X.
Moreover, the branch and bound principle is applied. The starting

box X ° is successively subdivided into smaller subboxes, and boxes X
for which we can decide that they do not contain global minimum points
are deleted. This decision is made by use of the inclusion function F and
an upper bound] of the global minimum. Boxes X with inf F(Z) >]
reliably do not contain any global minimum point and, therefore, can
be deleted. An introduction to these methods can be found in Hansen
(1992), Ratschek and Rokne (1988).

Below, a basic serial method for verified globM optimization is des-
cribed. Boxes are stored in a working list L or in a solution list g
together with in fF(X) , the lower bound of the range.

A L G O R I T H M 1 Basic serial method for verified global optimization
Given: starting box X °, inclusion function F, upper bound] , ¢ > 0

initialize n := {(X °, infF(X°))} , L := {};
w h i l e L ~ {} do

take pair (X, x) out of list L;
divide X into subboxes X1 , . . . , X ~, k _> 2;
for i = 1 , . . . , k do

compute F(Xi);
if inf F(X i) <_ f t h e n

f := min{supF(Xi), f};
ifw(F(X~)) <_ c t h e n put (X i, in fF(Xi)) into L;

else put (X ~, in fF(Xi)) into L;
end if;

end for;
cut-off test: delete all (X, x) with x >];

end while;

To get a full description of the algorithm one has to decide, how to
choose the next box for subdivision, and how this subdivision works.

Concerning the choice of the next box, several strategies are known
in literature:

-oldest-first strategy~

-depth-first strategy,

-best-first strategy.

4 SONJA BERNER

The oldest-first strategy always chooses the pair (X, x) for subdivision,
having resided in the list L longest. The depth-first strategy always
takes one of the pairs last inserted into L. If the best-first strategy is
applied, the pair (X, x) with x minimal in L is chosen.

One can show the following theorem (Berner (1995), Berner (1996c)):

- s t r a tegy A:

- s t r a tegy B:

- s t r a tegy C:

THEOREM 1. Using Algorithm 1 with best-first strategy no pair (X, x)
with x > f* + e will be chosen for subdivision.

Here, e is the parameter which was chosen for the criterion to insert
boxes into the solution list L. It is important to note that any strategy
for choosing the next box will have to investigate pairs (X, x) with
x _< f* and X not fulfilling the termination criterion w(F(X)) < e. For
these boxes a decision, if they contain global minimum points or not
is not possible yet, even if the global minimum f* is already known.
Only pairs (X, x) with f* < x < f* + e, therefore, might be considered
unnecessarily with the best-first strategy, but the number of these pairs
is small in practice. Using the other two strategies~ normally many pairs
(X, x) with x > f* + e are investigated, so that it is favorable to use
the best-first strategy. This was always our choice in our algorithms.

Subdivision of boxes is possible e.g. by multisection (Berner (1995),
Berner (1996c)): a box is bisected once or several times whereby the
directions basically are chosen as those where a merit function Di(x)
is maximal. This merit function may be defined by (cf. Csendes and
Ratz, Ratz and Csendes (1995))

D~(X) := w(X~),

D~(X) := w(F'(X)) .w(X~),

D~(X) := IF ' (X)I . w(X~).

The usual way in literature is to bisect a box only once by use of strategy
A. In Berner (1995), Berner (1996c) it was shown that especially for
large problems it is favorable to apply strategy C and that always
better results were obtained by bisecting a box twice in each step, i.e.
subdividing it into four new subboxes. The two directions of bisection
are chosen in the following manner. The first direction i is chosen as the
one with D~(X) largest. Then we set D~(X) := Di(X)/2 and choose
the second direction for bisection again as the direction with largest
Di(X).

In Berner (1996c) it was shown that in this way a very efficient
serial method has been constructed. This is quite important to keep
in mind since the efficiency of our parallel method is always measured
with respect to the efficiency of this serial method.

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 5

4. Paral le l i zat ion

The simplest way to parallelize an algorithm like the one presented as
Algorithm 1 is to partition the starting box X ° to all processors. Then
each processor can work on its own subbox rather independently of
all others. But it is likely that the amount of work one has to spend
on a subbox to solve the global optimization problem there, varies for
different subboxes. This approach, therefore, is not sufficient. Some pro-
cessors may become idle prematurely. This implies the need of dynamic
load balancing.

Moreover, one has to pay attention to that not considerably more
boxes are investigated in the parallel case than in the serial one. This
can happen, since in the parallel algorithm the best-first strategy is only
applied locally on each processor. From the global point of view, boxes
may be investigated in a different order than in the serial method. This
implies that there should exist an exchange of the current best value for
the upper bound] between the processors. A better value for] should
be sent as fast as possible to all other processors, but also without a
large overhead in communication. Furthermore, one should try to work
always on the p "best" pairs, i.e. those (X, x) with smallest lower bound
x, when p is the number of processors used.

In the following we will first discuss some existing parallelizations,
and then present our new parallel approach.

4.1. E X I S T I N G P A R A L L E L I Z A T I O N S

The approach of Henriksen and Madsen (1992) uses a master-slave
model. All boxes are kept in a central list on the master; the same is
true for the current upper bound / . The master sends boxes to the
slaves and gets the results back. A disadvantage of this model is that
there is quite a lot of work for the master. It becomes a bottleneck.
Moreover, the length of the list L is limited by the memory of the
master, while the memory of the slaves is not used at all. Henriksen and
Madsen applied the depth-first strategy to minimize communication.
A slave always keeps one of the two new subboxes resulting from the
last subdivision for further investigation, and only sends the second
one to the master. But applying the depth-first strategy, a good upper
bound] has to be known in advance to get an efficient algorithm (cf.
Section 3). In their approach, Henriksen and Madsen used the global
minimum f* to initialize f , but this value is normally unknown when
the algorithm starts.

Eriksson (1991) used a processor farm for his parallel method. The
processors are organized in a ring, each of them works in the same way.

6 SONJA BERNER

They keep their own sorted list, the best-first s trategy is applied on each
processor. If some processor runs out of boxes, it sends a request to the
next neighbor in the ring. Requests are forwarded by processors which
are idle, too. A be t te r value for the current upper bound f is sent by
a broadcast to all others. Two processes were used on each processor:
a worker to investigate the subboxes and a scheduler responsible for
the dynamic load balancing. An approach like this could not have been
realized on the machine we used here, a Connection Machine CM5,
since only one process may run on one processor at the same time.

The approach of Moore, Hansen and Leclerc (1992) is similar to the
one of Eriksson. They also use a processor farm, but the processors are
not organized in a ring. A request, therefore, is sent to an arbi t rary
processor. If this processor cannot respond to this request s it sends a
'no' back, and another processor is tried. The main difference to the
approach of Eriksson is that here the oldest-first s trategy was used. A
speedup of 170 on 32 processors was reached, bu t this is largely due to
the fact that the serial method is inefficient.

In fact, in a later paper Leclerc (1993) used nearly the same algo-
rithm, bu t applied the best-first s t rategy now. He gained a factor of 78
in speed for the serial method for the problem considered in Moore et
al. (1992). But for the parallel method now only about half of linear
speedup was reached.

4.2. A NEW PARALLEL APPROACH

Our new parallel approach combines the principle of a master-slave
model with that of a processor farm. Each processor keeps its own
sorted list; the best-first s trategy is applied on each processor. Unlike
the processor farm one processor is determined to be the centralized
mediator. This processor does not work on boxes. Instead, it waits for
requests of idle processors to send them new boxes. Moreover, it keeps
a limit max, that is changed dynamically. This limit is used to make
sure that the centralized mediator does not run out of boxes, but also
that not too many boxes axe stored in its list. Processors which keep
more than m a x boxes in their list send some of them to the centralized
mediator (Fig. 4.2).

A similar approach was used in Smith and Schnabel (1992) to par-
allelize a classical method for global optimization, the multi level single
linkage method (cf. Rinnoy Kan and Timmer (1987)). The term "cen-
tralized mediator" has been taken over from that paper. In Smith and
Schnabel (1992), other communicat ion models have also been exam-
ined, bu t numerical experiments indicated that the model using a cen-
tralized mediator was the most efficient one.

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 7

!i!!ii!ii!!iiiiiiii! iiiiiiii iiiiiiii!ili

, request

............ :i;i:i,Yi ,i,i:,::iiiiiS
NiiN

>= max empty list

Figure i. C o m m u n i c a t i o n s t r u c t u r e u s e d w i t h c e n t r a l i z e d media~;or.

sorted list

centralized mediator

An advantage of the parallel approach presented here compared to
the master-slave model used in Henriksen and Madsen (1992) is that
there is less work for the centralized mediator. So it will not become
a bottleneck supposed that the number of processors used is not too
high. For the master-slave model in Henriksen and Madsen (1992),
however, the master already became a bottleneck for only 32 processors.
Moreover, the whole memory including that of the workers is used.

Compared to the approach of Eriksson and the one of Moore, Hansen
and Leclerc, there is no need to request several processors to get boxes,
if a processor becomes idle. Instead, it is the centralized mediator that
directly responds to each request.

Now, we will present our parallel method in some more detail.

A L G O R I T H M 2 Parallel algorithm for the worker

initial phase,, provides L, L, f;
r e p e a t

whi le L ~ {} do
take (X, x) with x minimal out of L and subdivide X;
(cf. serial method)
possibly receive better value for];
send own value of] , if this is minimal;
cut-off test;
possibly send boxes to the centralized mediator for
dynamic load balancing;

end while;
send request to the centralized mediator;
receive boxes from the centralized mediator;
if number of received boxes > 0 t h e n sort them into L;

else stop;
end repeat;

8 SONJA BERNER

The algorithm starts with an initial phase, which is common for
the workers and the centralized mediator (Algorithm 2 and 3). The
starting box is partitioned, and each processor gets one subbox. The
upper bound] is initialized, e.g. with] := min~__ 1 sup F (X i) . Here X i
is the starting subbox of processor i, and p is the number of processors
used. A loop follows, during which a worker is first investigating the
boxes of its own list until it is empty. Then it sends a request to the
centralized mediator and waits for a response. The number of boxes
sent by the centralized mediator might be zero to signal termination.
The algorithm will stop then. Otherwise the boxes are sorted into the
list L, and the worker will restart investigation of the boxes of its list.
A box of the list L is investigated in the same way as in the serial
method, i.e. it is subdivided and the new subboxes are inserted into L,
into L, or they are deleted.

After one box has been investigated, possibly better, i.e. lower, val-
ues for the upper bound f , determined by other processors, are received.
The value of f is only updated if the received value is lower than the
current one. If the current value of f found by the worker itself is small-
er than the value in the last iteration and also than all received values,
then the worker will send this value to all others.

For the reason of dynamic load balancing, the value of max might
be updated if a new message with a value of max of the centralized
mediator is waiting to be received. If the list L of the processor actually
contains more than max elements, then it will send some of its boxes
to the centralized mediator. In this case, the second, the fourth, and so
on pair of the list L is chosen to be sent, because not only "bad" pairs
(X, x) with high lower bound x shall be sent, but the processor itself
shall also keep some "good" pairs with small lower bound x.

The algorithm of the centralized mediator (Algorithm 3) also starts
with the initial phase. Then a loop is executed until p - 1 proces-
sors will wait for boxes. This means that these processors and also the
centralized mediator itself do not have any boxes in their list L. For
termination, the centralized mediator then sends a termination mes-
sage corresponding to sending zero boxes to all processors.

A L G O R I T H M 3 Parallel algorithm for the centralized mediator

N

initial phase, provides L, L, f;
while not all p - 1 workers are waiting for boxes do

receive requests, boxes and possibly a better value for f;
respond to requests;
cut-off test;
adapt value of max;

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 9

end while;
send message of termination (send zero boxes);

While executing the loop, the dynamic load balancing is carried out.
Requests are received, and also boxes from those processors which have
plenty of them. These boxes are passed to those processors which have
sent a request.

Moreover, the centralized mediator possibly also receives a better
value for the upper bound]. It is important to know the current best
upper bound f of all processors. Otherwise, boxes might be sent to
other processors which could already be deleted knowing the current
best upper bound. The cut-off test is used afterwards to get rid of those
pairs (X, x) in L with x > jT, since these should not be sent to other
processors any more. So after the cut-off test the length of list L gives
the number of boxes for which it is actually reasonable to be sent to
other processors.

Furthermore, the value of max is adapted depending on the actual
length of the list L of the centralized mediator and also on the number
of requests that could not have been answered until now. The value of
max is sent to all other processors using asynchronous communication.
Here we take advantage of an asynchronous communication routine of
the Connection Machine CM5 that allows changing the message as long
as it is not already sent. Thus, the actual value is always received. One
can gain a number of messages by just changing the value of max, if the
message has not been sent yet. The same holds for the communication
of a better value of the upper bound f .

The algorithms are only shown in their simplest version here. More
sophisticated details are given in the next section. The presentation of
the algorithms, anyway, is also simplified.

4.3. IMPROVEMENTS

A more sophisticated initial phase than the one explained above can be
used. It is given in Algorithm 4. After having partitioned the starting
box each processor starts a classical local optimization from the mid-
point of its subbox. This usually delivers a rather good value for the
upper bound]. Some of the subboxes may already be deleted. For this
reason, a synchronous load balancing has to follow, which provides a
good distribution of subboxes.

A L G O R I T H M 4 Initial phase (for processor me)

get own subbox X me from partition of the starting box X°;
start local optimization from the midpoint of X me providing
~rne ~_]Rn;

10 SONJA BERNER

f := min~= 1 sup F_(:~i);
if i n f F (X me) > f t h e n delete Xme;
r e p e a t

carry out synchronous load balancing by subdividing and
redistributing the remaining boxes;
compute F (X i) for own subboxes X i, i = 1 , . . . , k, and
delete those X i with F (X ~) >];
a := number of processors which keep at least one subbox;

until (a >= p/2) V (a < p/S);
L := {}; L := {};
for all subboxes X i of processor me do

sort (X ~, in fF(Xi)) into L or put it into L;

This new initial phase is quite important for problems with high run-
ning time, but which do not parallelize very well. For problem MHL,
e.g., about half of the execution time is saved when this more sophisti-
cated initial phase is applied. For some small problems with low running
time the algorithm may be less efficient since the time used by the local
optimization and the synchronous load balancing is not compensated
by a better starting value for f .

To avoid considering boxes in the parallel method which are not
considered in the serial case when the best-first strategy is applied to
the whole list of all boxes, we also carry out a load balancing concerning
the quality of pairs in the list L. With regard to the best-first strategy,
high quality of a pair (X, x) means that the lower bound x is small. A
load balancing concerning the quality of pairs is also applied in Eriksson
(1991) and in Leclerc (1993). To keep communication low, the smallest
lower bound x of all pairs in the list L of a processor, characterizing its
pair with highest_quality, is only sent together with a better value for
the upper bound f . This is sufficient, since it is very likely for processors
with pairs of high quality_ to find a better value for f . After the lower
bound x together with f has been sent to all other processors, they
compare the quality of their own pairs with the received lower bound
x. A processor may send a request to the corresponding processor, if
only pairs of sufficiently low quality are available in its own list.

It may happen that not enough boxes are available in the list of
the centralized mediator to answer to all current requests. Since the
effort which has to be spent to completely investigate one box is not
known in advance, it might sometimes be better to subdivide some
boxes in smaller parts instead of letting several processors wait. In
these situations it turned out that it was normally better to split boxes
in order to be able to answer to all requests instead of always sending
a whole box to each processor and letting some processors wait if not

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 11

enough boxes are available. For example, for problem MHL we obtained
an improvement of about 37%.

5. N u m e r i c a l R e s u l t s

The efficiency of a parallel algorithm may be measured by the speedup

execution time of the method using 1 processor

S(p) := execution time of the parallel method using p processors

of the parallel method compared to the serial one. To be more honest,
sometimes the execution time of the best serial algorithm is used to
compute the speedup, but often this best algorithm is not known.

Our parallel method was implemented in Pascal-XSC (Klatte et al.
(1991)) on a Connection Machine CM5 with 32 nodes. To this purpose
the programming language was ported to the CM5 (Berner (1995)).
The CM5 is an MIMD-machine using message passing for communica-
tion. The processors are 40 MHz SPARC processors, each with a local
memory of 32 MByte. The topology of the communication network is a
fat-tree, which means that each processor can communicate with each
other in nearly the same time.

The numerical results presented in this section were obtained with
the basic parallel algorithm given by Algorithm 2 and 3 with all improve-
ments of Section 4.3. Additionally, the monotonicity test and, for small
boxes, the non-convexity check and the interval Newton method (cf.
Hansen (1992), Ratschek and Rokne (1988)) were applied. Unless oth-
erwise stated, strategy C is used for subdivision and a box is always
bisected twice in each step.

The test problems considered are partly standard test functions.
Only test functions for which parallelization might be useful were con-
sidered. Problems which only need up to 100 iterations to find the
solution have not been considered, since a parallelization on 32 proces-
sors is not promising at all. Some standard test problems have been
taken from Tbrn and Zilinskas (1989); these are the Har tman function
H6 and the problem of Goldstein-Price GP. The Levy function LEVY3,
the Kowalik problem KOW and the problems Schwefel 2.7 (SC2.7) and
Schwefel 2.14 (SC2.14) are described in the book of Hansen (1992) and
in Walster et al. (1985). Here [0, 0.42] 4 was chosen as starting box for
problem KOW, [0, 5] x [8, 11] x [0.5, 3] for problem SC2.7, all others
like those given in Hansen (1992), Walster et al. (1985). Some param-
eter estimation problems were also used as test problems. These are
the problem MHL described in Moore et al. (1992), the problem CSEN
(cf. Csendes and Ratz) and the problems GEO1 to GEO3 arising from

1 2 S O N J A B E R N E R

geodesy. These problems, together with problems HM1 to HM6 used in
Henriksen and Madsen (1992) and the problems UEND1 and UEND2,
for which X* is infinite, are reproduced in the appendix. For problem
CSEN the parameter e -- 10 -3 was used for insertion into the solution
list, for all other problems e = 10 -6 was chosen.

50

45

4O

35

25

2O

15

10

5

0

50

45

40

35

30

2O

15

10

5

0

GP

SC2.7
H6 -~

SC2.14

................... 17/IIU UIIII

4 8 16 32
number of processors

. HM4
K O W

" GEO1 , . , ' ~ :~
H M 2 /#);5;

C S E N ,~::~.',-'~" -2~ /
M H L ,2#>.;

Z

4 8 16 32
number of processors

50

45

40

35

30

25

20

15

10
5

0

50

G E O 3
GEO2

HM1 -~
HM6 /
HM3 / / - ; ~ " /

LEVY3 x - : % ~ . ~-"
HM5 / ~ : ("

4 8 16 32
number of processors

45

40

35

30

25

20

15

10

5

0

UEND1
U E N D 2 "

4 8 16 32
number of processors

Figure 2. Speedup obtained for small problems wi th serial running t ime less than
1 0 0 s (top left), for m e d i u m problems with running t ime from 1 0 0 s up to 1 0 0 0 s

(top right), for large problems wi th running t ime from 1 0 0 0 s up to 1 7 0 0 0 s (bo t tom
left) and for problems wi th infinitely m a n y global m i n i m u m points (bo t tom right).

Figure 5 shows the speedup for different test problems reached by
the parallel method using 4, 8, 16 and 32 processors. In Figure 5 on
the top left the speedup for rather small problems with low running
time (less than 100 s) is given. One sees that no linear speedup is
reached, for two of the problems even less than half of linear speedup
is obtained. But as the running time increases (100 s to 1000 s, top
right) the speedup gets better. It is always higher than half of linear
speedup, and for some problems it is even superlinear. For problems
with high running time from 1000 s to 17000 s with one exception in
all cases superlinear speedup is reached (bottom left). The picture on
the bottom right shows the speedup for two problems with infinitely
many global minimum points, which is at least about linear. This kind
of problem parallelizes very well. This is also pointed out in Section 6.1.

It is difficult to compare the efficiency of parallel methods only by
a comparison of speedups. However, since different computer architec-

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 13

tures were used in the different approaches, this was the only possible
way here.

For the following comparison it is worth mentioning that, using
strategy C instead of A, for some problems the serial as well as the
parallel method becomes faster but the speedup decreases. The expla-
nation for this is a higher improvement in speed for the serial than for
the parallel method when switching from strategy A to C. For exam-
ple, for problem HM5 a rather high speedup of 33.5 is reached on 32
processors with strategy A, the parallel method takes 42.1 s for ter-
mination. Using strategy C the speedup decreases to 14.2 (cf. Fig. 5),
al though the parallel method only needs 10.5 s (instead of 42.1 s with

50
45 strategy A
40 strategy C

35

30 / "
f i "

20 j / "

15

10

5

0
4 8 16 32

number of processors

Figure 3. S o m e t i m e s s peedup decreases w h e n s t r a t e g y C is used i n s t ead of A (here
for p rob l em HM5) .

strategy A). The same is true for problem MHL, the only one of the
larger problems for which no linear speedup is reached. The speedup,
therefore, has to be regarded with caution. It depends highly on the
efficiency of the serial method used as the base for its computation.

For the following comparison (by speedups) we assume the serial
method used here to be as efficient as those used for other paralleliza-
tions (cf. Section 3). Often it definitely will be more efficient due to a
better subdivision strategy, since all other methods use strategy A to
subdivide boxes.

In Table 5 the speedup of the new parallel method presented here is
compared to the speedup obtained by Henriksen and Madsen (1992).
For their method, the higher speedup is presented, which was reached
by use of the depth-first strategy and with the initialization] = f*.
With one exception (problem HM5) higher speedup is always r6ached
with our new parallel method. If we use strategy A for this problem
as was the case in Henriksen and Madsen (1992), then our speedup is
much higher than theirs in this case (values given in brackets).

14 SONJA BERNER

Table I. Comparison with the parallel method of Henriksen and Madsen.

speedup 16 processors speedup 32 processors
problem Hem/Mad. new method Hem/Mad. new method

HM1 8.6 17.6 7.3 34.2
HM2 10.4 18.6 12.6 38.1
HM3 11.4 17.5 11.7 26.2
HM4 13.5 18.7 16.5 41.0
HM5 13.0 11.0 (18.2) 20.7 14.2
HM6 11.6 14.5 19.2 29.7

(33.5)

A comparison with the parallel method of Eriksson is given in Table 5.
Since three different modifications of a parallel method are considered
in Eriksson (1991), the highest speedup obtained there is always used
for comparison. For problem HM6 we got a higher speedup with our new

Table II. Comparison with the parallel method of Eriksson.

speedup 16 processors speedup 32 processors
problem Eriksson new method Eriksson new method

SC2.14 19.6 5.2 (6.3) 28.3 5.6 (7.3)
SC2.7 11,0 9.8 (18.i) 15.0 15 .2 (34.8)
HM6 12.0 14.5 30.9 29.7

parallel approach on 16 processors; on 32 processors the speedup was
slightly lower. For problem SC2.7 our speedup becomes higher than
the one reached by Eriksson, if s trategy A is used instead of C. For
problem SC2.14 the speedup remains worse, even if s t rategy A is used.
But this problem needs about 10 times the running t ime of problem
SC2.7 with the serial method of Eriksson, while only about 6% of the
t ime used to solve problem SC2.7 is needed with our serial method. So
the high speedup reached by Eriksson might result from an inefficient
serial method in this case.

For problem MHL considered in Moore et al. (1992) a speedup of
170 on 32 processors, as reported in Moore et al. (1992) is not reached
by our method. But the speedup of 20.0 and 40.6, respectively, with
s t rategy A on 32 processors is still higher than the speedup Of about
8.5 on 20 processors reached by Leclerc (1993) for this problem.

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 15

The comparison shows that for many problems our speedup was
higher than the one of other parallel methods for global optimization.
Moreover, one has to keep in mind that all other parallel methods use
strategy A for subdivision while, here the more efficient strategy C was
used, which sometimes causes the speedup to decrease, although the
total execution time of the parallel method is decreased, too. If we also
use strategy A for these problems, then there remain two problems for
which the speedup given in Eriksson (1991) is higher. But for one of
these problems, the serial method of Eriksson seems to be inefficient,
for the other one the speedup is only slightly lower on 32 processors.
Furthermore, the approach of Eriksson uses two processes on each pro-
cessor, which could not be realized on the Connection Machine CM5.
Since our serial method can be supposed to be at least as efficient as
the one used to compute the speedup for the other parallel methods,
the comparison shows that a fairly efficient parallel method has been
constructed here.

6. S o m e T h e o r e t i c a l R e s u l t s

6.1. G E N E R A L CONSIDERATIONS

The parallel algorithm differs somewhat from the serial one~ since the
best-first strategy is only applied locally on each processor. The ques-
tion arises, therefore, if the same results will be obtained by both algo-
rithms. One can show that this is true under certain assumptions (Bern-
er (1995)):

T H E O R E M 2.Let the serial algorithm be started under the same condi-
tions that were obtained for the parallel method after the initial phase,

P i Lser p - i i.e. let Lser = Ui=lLpar, = Ui=lLpa ~ and fse~ = fp~r at the begin-
~i ning. Here L ~ and Lp~ are the lists of processor i, i = 1 , . . . ,p, after

the initial phase, p is the number of processors used.
This implies that after termination of the serial and of the parallel

algorithm f-~r] . ~ and L.e~ p -i -- = Ui=lLpa ~ holds, i.e. the same results
are obtained.

The proof is rather technical, and will be omit ted here. It can be found
in Berner (1995).

Problems of global optimization might parallelize poorly, if there
exists only one global min imum point and if subboxes which do not
contain the global min imum point can directly be deleted, e.g. by using
an inclusion function that is equal to the range of the function.

16 SONJA BERNER

But one can show that if there exist at least p global minimum points
and if those will be separated by a low number of subdivisions, then
a good parallelization is possible, since enough boxes are available to
keep all processors working. This is also true if at least p points exist
with a function value only slightly higher than the global minimum.
Note tha t problems of this kind are usually hard to solve by classical
methods.

Assume that a box is always split into q subboxes using multisection.
Let X (°'~), j = 1 , . . . ,p, be the boxes arising from the first part i t ion of
the start ing box to all p processors in the initial phase. Let X (l'j) , j =
1 , . . . , kl, kl = p" q, be those boxes arising from the first multisection
of all X (°J), and so on. Let the number of those X (i'2, i E]No, which
contain global min imum points be denoted by a(i):

a(i) := # (X (if), j = 1 , . . . , k i : X (i'D N X * ~ 0}.

Let ~ = 0 and assume that all processors work synchronously on
their boxes. Let the boxes be redistr ibuted after each step to keep as
many processors working as possible. If only k < p global min imum
points exist, then it is possible that after some time only k boxes will
be investigated any longer, each of them containing a global min imum
point. This means tha t some processors might become idle. Assuming,
however, that there exists an m E/No with a(m) > p, and denoting the
smallest such m by too, we get:

LEMMA 1.Let mo := min{m E ZW0 : a(m) >_ p}, whereby m ~ 1No with
a(m) > p should exist. Assuming that c = 0 is chosen in the parallel
algorithm, it holds that the number of steps where less than p boxes are
available is at most too.

Proof. If some processor P1 is running out of boxes during the iter-
ation, then two cases can occur:

1.Some other processor keeps more than one box in its list L. Then one
of them can be passed to P1.

2.Each processor keeps at most one box in its list. Using the assumption
and a(m) > p for all m > mo, one knows that at least one processor
exists with more than one global min imum point in its box. After at
most mo iterations this processor will keep two boxes in its list. One of
them can be sent to/°1.

Let Fn be the number of iterations P1 is idle. Since each processor will
subdivide its only box during these rh iterations, only boxes X (m'/) with
m > rh will exist afterwards. Keeping this in mind, it is obvious tha t

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 17

the number of iterations with less than p boxes available is at most rn0.
[]

It follows

C O R O L L A R Y 1.Let there exists an m E 1No with a(m) >_ p, then there
exists a point of time from which all p processors can be kept busy.

This means that if there are at least p global min imum points and if
these are well distr ibuted over the starting box X ° then the method
will parallelize quite nicely.

6.2. SUPERLINEAR S P E E D U P ?

The numerical results of Section 5 show that, for some problems slightly
superlinear speedup is reached. Superlinear speedup often creates sus-
picion that the serial algorithm used for comparison is inefficient. Let
us assume in the following that the best-first strategy is used to choose
the next box for subdivision. According to Theorem 1 almost only those
boxes are considered for which this is really necessary. Therefore, the
question arises, whether superlinear speedup is possible with respect
to the number of iterations, i.e. the number of investigated boxes. The
next theorem shows that this may hardly be expected.

T H EO REM 3.Assume that the serial Algorithm 1 with best-first strat-
egy is started under the same conditions that occur in parallel after
the initial phase, i.e. let the serial algorithm start with working list

p i i Lser = [Ji=1 Lpa r, where Lpar denotes the working list of processor i
resulting from the initial phase.

Let I(1) denote the number of iterations of the serial method, K
the number of boxes X investigated in serial with f* < i n f F (X) (~
f* +~). Assume that, applying the parallel method, the maximal number
of iterations on one processor is I(p). Then

I(1) < p
- - K I(p) 1 z(~)

holds.
Proof. Theorem 1 shows that, using the best-first strategy no pair

(X, x) is investigated for which x > f* + ~ holds. With K defined as
above, the number of investigated pairs (X, x) with x _< f* is I(1) - K.
These boxes X also have to be investigated in the parallel method, since
a decision whether a global minimum point is contained in the box X
is not possible yet, even if the global min imum f* is already known.

18 SONJA BERNER

Thero~oro, there exists at least one procos~or which subdivides [' ~ : ~]

o~ mo~o ~oxos, ~ ~ ~ ~e~ [' 1 - ~ 1 i~er~o~ are n e ~ a ~ ~

the parallel case. This implies

I(p) > 1 (1) - K _ I(1___)) (1 - K) resp. 1(1) < p
p p ~ I(p) 1 i(1)

[]

As we already mentioned in Section 3 the number K normally is small
compared to the total number of iterations 1(1). Therefore the speedup
on p processors is limited by a value only slightly higher than p.

This theorem only deals with the speedup concerning the number
of iterations. Since the number of function and derivative evaluations
depends strongly on the number of iterations, and since for large prob-
lems the running time is highly correlated with the number of function
and derivative evaluations this theorem clearly indicates that no sub-
stantial superlinear speedup is possible, assuming that the best-first
strategy is used.

7. S u m m a r y

We presented a new approach to parallel verified global optimization.
This approach uses a centralized mediator, responsible for the dynam-
ic load balancing. For the first time to our knowledge a subdivision
strategy that uses the gradient was applied in a parallel method. This
subdivision strategy often provides a much faster algorithm in the serial
as well as in the parallel case.

Measurements on a Connection Machine CM5 for a variety of test
problems and the comparison with other parallel methods for verified
global optimization showed the efficiency of the new parallel approach.
For larger problems at least linear speedup was reached quite often.
This also holds for two problems with infinitely many global minimum
points.

Moreover, some theoretical results were given. It turned out that the
same solution is found by the parallel method as by the serial one. It
was shown that a good parallelization may be expected if the number of
global minimum points is at least equal to p, the number of processors,
and if these are well distributed over the starting box. A very important
result of this paper is a theorem which clearly indicates that, applying
the best-first strategy, no real superlinear speedup may be expected
concerning the number of iterations. In most cases the running time

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 19

highly correlates with the number of iterations, so this will also be true
for the speedup concerning the running time.

R e f e r e n c e s

Alefeld, G., Herzberger, J. (1983), Introduction to Interval Computations, Academic
Press, New York.
Berner, S. (1995), Ein paralleles Verfahren zur verifizierten globalen Optimierung,
PhD Thesis, Bergische Universit/it GH Wuppertal, Germany.
Berner, S. (1996a), Parallel validated global optimization. To appear in ZAMM.
Berner, S. (1996b), A parallel method for verified global optimization, in Alefeld,
G., Frommer, A., Lang, B.(eds.), Scientific Computing and Validated Numerics,
Akademie-Verlag, Berlin, 200-206.
Berner, S. (1996c), New results on verified global optimization. Accepted for publi-
cation in Computing.
Csendes, T., Ratz, D., Subdivision direction selection in interval methods for global
optimization. To appear in SIAM Journal of Numerical Analysis.
Eriksson, J. (1991), Parallel global optimization using interval analysis, Licentiate
Thesis, University of Ume£.
Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker,
New York.
Henriksen, T., Madsen, K. (1992), Use of a depth-first strategy in parallel global
optimization, Tech. Report 92-10, Institute for Numerical Analysis, Technical Uni-
versity of Denmark, Lyngby.
Leclerc, A. (1993), Parallel interval global optimization and its implementation in
Cq-÷, Interval Computations, 3, 148-163.
Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, C. (1991), Pascal-XSC - -
Sprachbeschreibung mit Beispielen, Springer-Verlag, Berlin, Heidelberg.
Klatte, R., Kulisch, U., Lawo, C., Rauch, M., and Wiethoff, A. (1993), C-XSC -
A C-F+ Class Library for Extended Scientific Computing, Springer-Verlag, Berlin,
Heidelberg.
Moore, R. E., Hansen, E., Leclerc, A. (1992), Rigorous methods for global optimiza-
tion, in Floudas, C. A., Pardalos, P. M. (eds.), Recent Advances in Global Optimiza-
tion, Princeton University Press.
Neumaier, A. (1990), Interval methods for systems of equations, Cambridge Univer-
sity Press, Cambridge.
Ratschek, H., Rokne, J. (1988), New Computer Methods for Global Optimization,
Ellis Horwood, Chichester.
Ratz, D., Csendes, T. (1995), On the selection of subdivision directions in interval
branch-and-bound methods for global optimization, Journal of Global Optimization,
7, 183-207.
Rinnoy Kan, A. H. G., Timmer, G. T. (1987), Stochastic global optimization meth-
ods, Part II: Multi level methods, Mathematical Programming, 39, 57-78.
Smith, S. L., Schnabel, R. B. (1992), Dynamic scheduling strategies for an adaptive,
asynchronous parallel global optimization algorithm, Tech. Report CU-CS-625-92,
University of Colorado.
TSrn, A., Zilinskas, A. (1989), Global Optimization, Springer-Verlag, Berlin, Heidel-
berg.
Walster, G., Hansen, E., Sengupta, S. (1985), Test results for a global optimization
algorithm, in Boggs, P., Byrd, R., Schnabel, R. (eds.), Numerical Optimization 1984,
SIAM, Philadelphia, 272-287.

20 S O N J A B E R N E R

A.

A p p e n d i x

S o m e T e s t P r o b l e m s

In the following some of the test functions used are described which
are not very common.

MHL(paraIae te r estimation problem of Moore, Hansen and Leclerc
(Moore et al., 1992))
Define data points (x~, Yi), i = 1 , . . . , n, with n = 81 by

x~=4.0 + 0.1(i + 1),

- - r t
y i - - - - a l e L s~ J --ka2e L s~ j

with
al = 130.89 a2 = 52.6
ul --- 6.73 u2 = 9.342
sl = 1.2 s: = 0.97

Minimize
2

---- k s l J Jr-a2e k s2 J - - Y i f (a l , a2, ul, u2, sl, s2) a l e -

Starting box: [130, 135] x [50, 55] x [6, 8] x [8, 10] x [1, 2] x [0.5, 1].

CSEN(paramete r estimation problem of Csendes, cf. C~sendes and Ratz)

i = 1

x C IR 5,

+ (y irn~ -- (cos. :c4 -- --

with y r e = (5 , 3 , 2, 1.5, 1.2, 1.1) T,

y i m = (- 5, - 2 , - 1, -0 .5 , -0 .2 , -0.1)T,

W----(0.057r, 0.17r, 0.157r, 0.27~, 0.257r, 0.37T) T.

Starting box: [0, 1] x [0, 1] x [1.1, 1.2] x [0, 1] x [0, 1].

G E O l (p r o b l e m from geodesy t)

f (x)=(~ /x~ + x~ - 2c lx2x3 - s l) 2 + (I X ~ + x~ - 2c2X;X 1 - - 8 2) 2

s 2]R 3

PARALLEL METHODS FOR VERIFIED GLOBAL OPTIMIZATION 21

with

i ci si

1 0.846735205 1871.10
2 0.928981803 1592.40

3 0.912299033 1471.90

Starting box: [0, 3600] x [0, 3520] x [0, 3520].

GEO2(problem from geodesy)
f (x) as in GEO1, x C]R 3, with

i ci si

1 0.740824038 6.2
2 0.817119474 5.0
3 0.737253644 6.3

Starting box: [0, 8.68] x [0, 9.24] x [0, 8.68].

GEO3(problem from geodesy)
f (x) as in GEO1, x E lit 3, with ci = 0.766044443, si = 5.0 for i =
1 , . . . , 3 .

Starting box: [0, 8.0] 3.

HMl(p rob lem of Henriksen and Madsen (Henriksen and Madsen, 1992)) [1 1 01
f (x) = y T A y - - x l w i t h y i = s i n (x i) , A = / - 1 2121 I / , x E 1 R 5

L0 - 1 2 J

Starting box: [-1, 1] 5 .

HM2(problem of Henriksen and Madsen (Henriksen and Madsen, 1992))
f (x) as for problem HM1, x E IR 7
Starting box: [-1, 1] 7.

HM3(problem of Henriksen and Madsen (Henriksen and Madsen, 1992))
2 5

f (x) = - ~ ~-~.j sin((j + 1)xi + j), x E IR 2
i=1 j = l

Starting box: [-10, 10] 2 .

22 SONJA BERNER

HM4 (problem of Henriksen and Madsen (Henriksen and Madsen, 1992))
3 5

f (x) = - ~ ~-~j s in((j + 1)xi + j) , x • IR 3
i=1 j = l

Star t ing box: [-5 , 5] 3 .

H M 5 (problem of Henr iksen and Madsen (Henriksen and Madsen, 1992))
lo 1

f (x) = ~ - ~ , ((e - t ' ~ l - e - t ' ~) - x 3 (e - t ' - e - l ° t ~)) 2, t~= -iO, x e lR3
i----1

Star t ing box: [0.9, 1.2] x [9, 11.2] x [0.9, 1.2].

H M 6 (problem of Henr iksen and Madsen (Henriksen and Madsen, 1992))
10 10

f (x) -= ~ ((l n (x / - 2)) 2 + (ln(10 - xi)) 2) - (l ' I x/) °'e, x •]1% 1°
i = 1 i=-I

Star t ing box: [3, 4] 5 × [3, 6] 5.

U E N D 1
f (x) = (x l - x2) 2, x e
Star t ing box: [-2 .0 , 2.5] 2 .

U E N D 2
f (x) as for p rob lem SC2.7.
Starting box: [0. Ii] × [0, ii] x [-3, 3].

N o t e s

1 Problems GEO1, GEO2 and GEO3 are due to Prof. Dr. G. Heindl, Universit~it
Wuppertal.

